〈序 文〉 特集:水共生学の創生に寄せて

水共生学の創生:持続可能な水循環システムの実現に向けた学際研究

荒谷邦雄 1, 渡部哲史 1, 藤岡悠一郎 1, 松本朋哉 2, 永井信 3,4

Integrated Sciences for Sustainable Human-Aqua Environment

Kunio ARAYA, Satoshi WATANABE, Yuichiro FUJIOKA, Tomoya MATSUMOTO, NAGAI Shin

- ¹ Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka Nishi-ku Fukuoka 819-0395, Japan
- ² Faculty of Commerce, Otaru University of Commerce, 3-5-21 Midori, Otaru, Hokkaido 047-8501, Japan

生命に欠かせない水を安定的に確保し、ときに生じる極端な水災害を軽減し、流域生態系や生物資源を有効的に利用することは、人類が歴史的に取り組んできた課題である。例えば、水不足の際に農業用水を確保するためのため池の掘削や頻繁に洪水を引き起こす暴れ川を安定させる治水工事、清らかな水の湧く場所や水管理の要所に水神を祀り、筌漁や簗漁などの地域の自然環境や魚の生態に応じた漁法を発達させてきた。しかしながら、気候変動にともなう激甚化や頻発化が著しい自然災害は、現在でも人々の生命や財産を脅かす主要なグローカルなリスクの一つとして位置付けられる。そのため、水危機・水リスクを軽減し、水とヒト、生物が持続的に共生する社会を実現することは依然として国際社会が取り組むべき課題となっている。

私たちの研究グループでは、水をとりまく環境を地球圏―生物圏―人間圏の相互作用によって成立する系として捉え、その系を"水循環システム"とよぶ。本特集では、この水循環システムを鍵概念とする学際研究である"水共生学"を創生すべく、5編の事例研究を紹介する。その特集の序文である本稿では、これらの水循環システムと水共生学の概要を説明する。

水循環システムは、大気や大地・海洋などの地球圏、生物の営みや生態系を含む生物圏、陸域や水域での 人間活動などの人間圏の三つの圏域のせめぎ合いによって生じる"ゆらぎ(調和がとれた状態で生じる相互 的な影響力の変化)"を常に内包しているシステムである。水は、地球圏の規模で海洋と大気、地表の間を 循環している物質である。この水は生物圏においては森林や河川、干潟、浅海などの流域圏生態系の形成や、 生物多様性を支える基盤となっている。人間圏においては農作物の栽培、水運の発達や港町の形成、灌漑や 治水、水の表象や信仰などの多様な場面で水を制御し活用してきた。このように生物やヒトは水から様々な 恩恵を得ているが、その一方で、水を介した感染症の流行や洪水・干ばつ災害など、水に起因して生じる多 様な問題に直面している。このような問題を最小化するためには、水循環システムのゆらぎの幅を小さく し、持続可能な枠の中に収める必要があるが、とりわけ近代以降、人間の活動(人間圏の要因)がこのゆら ぎに短期間で大きな影響を及ぼすようになっている。ゆらぎの幅が大きくなる(いずれかの影響力が極端に 増大/減少することで、本来持っていた許容範囲(遊び)を越えてしまい、調和が崩れた状態となる)と、 気象災害の頻発や水資源紛争の発生、生物多様性の喪失など、人間社会や生態系に多大なる影響が生じるも のと捉えられる。また、ゆらぎがもたらす影響は地球環境の空間的な差異や、地域の人間活動や生態環境の 在り方に強く依存し、地域差が著しい。さらに、水循環システムの中のゆらぎは、水をめぐる社会的課題の トレードオフ関係(例えば、防災のために河川改修工事をすると希少な生物種が絶滅してしまうなど)を引 き起こすこともある。水環境と生態系、人間活動とのバランスがとれた"水共生社会"の実現は、SDGs の

³ Earth Surface System Research Center, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan

⁴ River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

¹ 九州大学 大学院比較社会文化研究院 〒819-0395 福岡市西区元岡 744

² 小樽商科大学 商学部 〒047-0034 北海道小樽市緑 3-5-21

³ 国立研究開発法人海洋研究開発機構 地球環境部門 地球表層システム研究センター 〒236-0001 神奈川県横浜市金沢区昭 和町 3173-25

⁴岐阜大学 流域圏科学研究センター 〒501-1193 岐阜県岐阜市柳戸 1-1

達成にも重要である。そこでは、水をめぐる不利益が緩和され、水から得られる便益が最大限かつ持続的に 享受され、癒しや安らぎをもたらす水の機能と価値が文化として持続的に継承される。言い換えれば、これ は地球規模の水の循環(地球圏)と生態系(生物圏)、人間活動(人間圏)との均衡(結節点)をいかに見 出すかという問題として捉えられる(図 1)。

各圏における水循環システムのゆらぎの振幅と時間スケールが異なるため、均衡のバランスを理解するためには、時間軸を入れた動態的な理解が必要である。各地域において、過去から現在までのゆらぎを動態的に捉え、水循環システムがいかなる均衡のもとで推移してきたのかを明らかにし、その知見をもとに将来の結節点を持続可能な範囲に維持しようとする学問を、ここでは"水共生学"とよぶことにする。

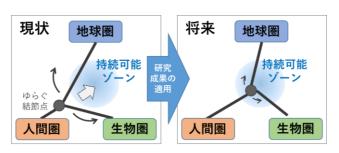


図1 水共生学の枠組み

私たちの研究グループでは、この水共生学を提唱し、新たな学問分野として確立するための共同研究を文部科学省・科学研究費助成事業・学術変革領域研究(A)「ゆらぎの場としての水循環システムの動態的解明による水共生学の創生」(令和3~7年度)の一環として開始した(https://mizu-kyosei.net/)。水共生学では、水循環システムの三つの圏域とその相互作用を歴史的な時間軸を設定し、動態的に解明する。そして、水循環システムの動態的な解明を通じて、地域の実態に即した水環境の社会的課題解決の道筋(シナリオ)を策定し、将来像(ビジョン)を提案する。これらにより、ある地域における水循環システムのバランス(結節点)の現状に至る要因を動態的に解明し、直面している課題を解決する道筋(シナリオ)の提案を通じて、持続可能な水循環システムの実現を目指している。この実現には地球科学・人文社会・生物学など多岐にわたる学問分野を射程とした、科学知の分野横断的な統合を志す学問の確立が必要とされる。

本特集では水共生学の創生に向け、水循環システムの解明や水環境の社会的課題解決、また、それらに必 要となる地球圏―人間圏―生物圏を接続する情報や知見を扱う研究事例について報告する。永井ほかは、中 部地方の長良川流域を例として、公開資料にみられる出水と漁獲高の記録を分析し、人々と水の関わりの 100 年スケールでの時間変化を紐解いた。また、時層写真やインターネットの検索統計機能である Google Trends・人流データを活用した新たな分析手法を提案し、それらの有用性や課題点をまとめた。丸谷ほかは、 北海道の知床を例として、気温と降水量の長期変動・土地利用変化・酪農業と水産業の変化に着目し、気候 と社会システムの変動下における陸域と海域の物質循環の相互作用系を長期的に評価・推定するための方 法論を提示した。さらに、発展的な方向性として、過去の統計データのマイニングや過去の陸域ー海域間の 物質循環の復元を検討し、健全な流域圏環境の評価手法構築の重要性を指摘した。小谷ほかは、モンゴルの 遊牧景観を例として、1980年代から 2000年代にかけて日本放送協会(NHK)により放映された複数のテレ ビ番組映像番組を用いて、人々の暮らしとその背景にある自然・文化・社会の情報を抽出し、人々と景観の 関わりの時間変化を紐解いた。また、これらの関わりを深く理解するための視聴覚資料の活用において、過 去の探索や今後登場する多様なメディアの利用、従来のアナログ的分析と AI(人工知能)分析の統合と選 択の重要性を指摘した。渡部ほかaは、メコン川流域を例として、水・物質・人間・生物の長期的な時空間 動態の特徴に着目し、各学術分野において行われている研究の概要をまとめ、流域における学際的な課題・ その解決に向けた学際研究のあり方を考察した。その結果、「流域/人間/生物それぞれの振る舞いに関する過 去/現在/将来の変化の把握」・「流域住民との協働」という 2 つの視座の重要性が示された。渡部ほか b は、 琉球諸島を例として、水循環/利用・陸水環境・生物多様性とその保全・生物分布の時空間動態に着目し、 学術研究の進展や課題、研究の社会実装という視座において水循環と生物多様性を取り巻く現状をまとめ、 学際的な研究の可能性と展望を考察した。その結果、ステークホルダーとの協働・島内外の関係・過去/現 在/将来の異なる時点における状態変化という3つの視座の重要性が示された。

以上 5 編の論文は、国内外を問わず、最先端の研究開発事例に基づいた独創性と革新性に富んだ議論であり、流域圏科学の研究教育開発を促進させる原動力となる可能性を秘めていると自負する。しかしながら、 学際的な流域圏科学を網羅する議論には到底及ばず、読者諸兄からの建設的な批判や創造的な意見を広く 求める次第である。5編の拙稿を動機付けとし、流域圏科学の発展に資すれば幸甚である。

謝辞 本研究は MEXT 科研費 JP21H05177 の助成を受けたものである。